สับเซตและเพาเวอร์เซต
• สับเซต
บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสามารถเขียนแทนได้ด้วยสัญลักษณ์ A ⊂B
บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสามารถเขียนแทนได้ด้วยสัญลักษณ์ A ⊂B
ตัวอย่างที่ 1 A = {1, 2, 3}
B = { 1, 2, 3, 4, 5}
∴ A ⊂ B
ตัวอย่างที่ 2 C = { x | x เป็นจำนวนเต็มบวก } = {1,2,3,…}
D = { x | x เป็นจำนวนคี่ } = {…,-3,-1,1,3,…}
∴ C D
ตัวอย่างที่ 3 E = { 0,1,2 }
F = { 2,1,0 }
∴ E ⊂ F และ F ⊂ E
จากตัวอย่างที่ 3 จะเห็นว่า E ⊂ F และ F ⊂ E แล้ว E = F
สับเซตแท้ เซต A จะเป็นสับเซตแท้ของเซต B ก็ต่อเมื่อ A ⊂ B และ A ≠ B
จำนวนสับเซต ถ้า A เป็นเซตที่มีสมาชิก n สมาชิกแล้ว จำนวนสับเซตของเซต A จะมี 2n เซต และในจำนวนนี้เป็นสับเซตแท้ 2n – 1 เซต
B = { 1, 2, 3, 4, 5}
∴ A ⊂ B
ตัวอย่างที่ 2 C = { x | x เป็นจำนวนเต็มบวก } = {1,2,3,…}
D = { x | x เป็นจำนวนคี่ } = {…,-3,-1,1,3,…}
∴ C D
ตัวอย่างที่ 3 E = { 0,1,2 }
F = { 2,1,0 }
∴ E ⊂ F และ F ⊂ E
จากตัวอย่างที่ 3 จะเห็นว่า E ⊂ F และ F ⊂ E แล้ว E = F
สับเซตแท้ เซต A จะเป็นสับเซตแท้ของเซต B ก็ต่อเมื่อ A ⊂ B และ A ≠ B
จำนวนสับเซต ถ้า A เป็นเซตที่มีสมาชิก n สมาชิกแล้ว จำนวนสับเซตของเซต A จะมี 2n เซต และในจำนวนนี้เป็นสับเซตแท้ 2n – 1 เซต
• เพาเวอร์เซต
บทนิยาม เพาเวอร์เซตของเซต A คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสับเซตทั้งหมดของเซต A และสามารถเขียนแทนได้ด้วยสัญลักษณ์ P(A)เป็นต้นอ่านเพิ่มเติม
บทนิยาม เพาเวอร์เซตของเซต A คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสับเซตทั้งหมดของเซต A และสามารถเขียนแทนได้ด้วยสัญลักษณ์ P(A)เป็นต้นอ่านเพิ่มเติม
ไม่มีความคิดเห็น:
แสดงความคิดเห็น